427
Advances in Proteomics Research in Environmental Stress Response in Plants
Irsigler, A. S., Costa, M. D., Zhang, P., Reis, P. A., Dewey, R. E., Boston, R. S., & Fontes, E.
P., (2007). Expression profiling on soybean leaves reveals integration of ER and osmotic-
stress pathways. BMC Genomics, 8, 1–15.
Jacoby, R. P., Millar, A. H., & Taylor, N. L., (2010). Wheat mitochondrial proteomes provide
new links between antioxidant defense and plant salinity tolerance. Journal of Proteome
Research, 9, 6595–6604.
Kamal, A. H. M., Cho, K., Kim, D. E., Uozumi, N., Chung, K. Y., Lee, S. Y., Choi, J. S., et al.,
(2012). Changes in physiology and protein abundance in salt-stressed wheat chloroplasts.
Molecular Biology Reports, 39, 9059–9074.
Kawamura, Y., & Uemura, M., (2003). Mass spectrometric approach for identifying putative
plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. The
Plant Journal, 36, 141–154.
Kesseler, A., & Brand, M. D., (1994). Quantitative determination of the regulation of
oxidative phosphorylation by cadmium in potato tuber mitochondria. European Journal of
Biochemistry, 225, 923–935.
Kinoshita, T., Nishimura, M., & Shimazaki, K. I., (1995). Cytosolic concentration of Ca2+
regulates the plasma membrane H+ -ATPase in guard cells of fava bean. The Plant Cell, 7,
1333–1342.
Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., & Furukawa, K., (2010). Comparative
proteomics analysis of differentially expressed proteins in soybean cell wall during flooding
stress. Amino Acids, 39, 1435–1449.
Komatsu, S., Wada, T., Abalea, Y., Nouri, M. Z., Nanjo, Y., Nakayama, N., Shimamura, S.,
Yamamoto, R., Nakamura, T., & Furukawa, K., (2009). Analysis of plasma membrane
proteome in soybean and application to flooding stress response. Journal of Proteome
Research, 8, 4487–4499.
Komatsu, S., Yamamoto, A., Nakamura, T., Nouri, M. Z., Nanjo, Y., Nishizawa, K., &
Furukawa, K., (2011). Comprehensive analysis of mitochondria in roots and hypocotyls of
soybean under flooding stress using proteomics and metabolomics techniques. Journal of
Proteome Research, 10, 3993–4004.
Kontunen-Soppela, S., Ossipov, V., Ossipov, S., & Oksanen, E., (2007). Shift in birch leaf
metabolome and carbon allocation during long‐term open‐field ozone exposure. Global
Change Biology, 13, 1053–1067.
Kosmala, A., Perlikowski, D., Pawłowicz, I., & Rapacz, M., (2012). Changes in the
chloroplast proteome following water deficit and subsequent watering in a high-and a low
drought-tolerant genotype of Festuca arundinacea. Journal of Experimental Botany, 63,
6161–6172.
Kotchoni, S. O., & Gachomo, E. W., (2006). The reactive oxygen species network pathways:
An essential prerequisite for perception of pathogen attack and the acquired disease
resistance in plants. J. Biosci., 31, 389–404.
Kruft, V., Eubel, H., Jansch, L., Werhahn, W., & Braun, H. P., (2001). Proteomic approach to
identify novel mitochondrial proteins in Arabidopsis. Plant Physiology, 127, 1694–1710.
Kubo, T., Fujita, M., Takahashi, H., Nakazono, M., Tsutsumi, N., & Kurata, N., (2013).
Transcriptome analysis of developing ovules in rice isolated by laser microdissection. Plant
and Cell Physiology, 54, 750–765.
Le Gall, H., Philippe, F., Domon, J. M., Gillet, F., Pelloux, J., & Rayon, C., (2015). Cell wall
metabolism in response to abiotic stress. Plants, 4, 112–166.